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Abstract

In this paper we present MEXEC - a lightweight on-board
planning and execution system that monitors spacecraft state
to robustly respond to current conditions. In addition it
projects the remaining plan forward in time to detect con-
flicts and revise the plan.

Most current planetary missions use sequence based com-
manding from the ground, which limits the ability to respond
to on-board state varying from planned for state. This re-
sults in planning for worst-case execution time, power uti-
lization, data volume and other resources and leads to under-
utilization of the spacecraft capability. It also limits the abil-
ity to respond to faults.

Due to the high radiation environment at Jupiter the prob-
ability of flight software resets is high. Therefore, of partic-
ular interest to the planned Europa Mission is the capability
to restart the science plan after flight software resets. In this
paper we present results from running Europa flyby scenar-
ios with flight software resets in the Europa flight software
test environment. Preliminary results with the prototype sce-
nario show MEXEC takes less than a tenth of a second to
respond to resets. The development was done as part of
Europa-focused flight software, but MEXEC was designed
to be applicable to landers and rovers as well.

Introduction

The Europa Clipper mission is baselined to orbit Jupiter
and conduct 45 low-altitude flybys of its moon Europa.
Each flyby would be approximately 10-20 hrs as part of
an orbit of approximately 14 days. The duration of flyby
and orbit would vary for each elliptical orbit. The radi-
ation the spacecraft would experience is high and this is
expected to cause the flight software to reset. The cur-
rent requirement is to accommodate five flight software re-
sets during the Europa flyby segment. The highest prior-
ity science for the mission occurs during the flybys. There
is a requirement to autonomously recover science activi-
ties after a reset since there is insufficient time to transmit
spacecraft state and receive an updated plan from Earth.
Figure 1 shows a simplified example of the spacecraft or-
bit around Jupiter and flyby of Europa. Each petal is ex-
pected to be slightly different. Information about the Europa
mission is available at https://www. jpl.nasa.gov/
missions/europa-clipper/.

Figure 1: Simplified Jovian Orbit and Flyby Segment.

Sequencing Approach and Related Work

Existing deep space spacecraft such as Cassini, Mars Ex-
ploration Rovers, and Curiosity use a sequencing based ap-
proach for commanding. Science and engineering intent and
constraints are taken into consideration during ground based
planning. Based on the intent and constraints a set of time
and event driven activities are generated. A simple exam-
ple is shown in Figure 2. The intent in the example is to
collect Ultraviolet Spectrograph (UVS) data with the instru-
ment slewing across Europa. In order to slew the instrument
the entire spacecraft must be slewed. Hence the spacecraft
Guidance and Navigation Controller (GNC) must attain the
initial attitude to start the scan, then command UVS to col-
lect data while co-ordinating GNC to slew for the UVS scan.
The UVS instrument temperature must be maintained within
operating range while it is scanning. To reach the operating
temperature the thermal system needs to be commanded to
turn on the heaters. The heaters take a period of time to
reach the operating range, hence the warmup activity must
be scheduled accordingly to ensure the instrument is at op-
erating range by the time GNC has achieved the initial scan
attitude. There are many additional constraints and impacts
that are not shown in the simplified example. For example
the impact on power from turning on the heaters and the in-
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Figure 2: Existing sequencing approach

strument.

Ground tools are used to expand activity templates, model
constraints and impact on state, and detect conflicts. Activ-
ities are updated based on the feedback until a conflict free
plan is generate on the ground. Once a conflict free ground
based plan is generated, it is translated into sequences. Se-
quences capture one (or a few) possible plan paths. Once
the plan is converted to sequences much of the original sci-
ence and engineering intent and constraints are lost. The se-
quences that implicitly meet the intent and constraint given
predicted state are uplinked to the spacecraft. On-board
monitoring is typically limited to fault checking. To miti-
gate faults typically considerable margin is maintained in the
plan, which results in under-utilization of resources. How-
ever, they cannot completely be avoided such as in the event
the spacecraft encounters a flight software reset.

MEXEC Approach

In the MEXEC approach shown in Figure 3 , the intent and
constraints available during ground based planning are pre-
served and uplinked to the spacecraft. MEXEC flight soft-
ware executes the plan. It monitors on-board state to ro-
bustly respond to actual state and uses current state to per-
form on-board constraint checking.

The ability to robustly respond to actual state and perform
on-board constraint checking for the executing and remain-
ing plan enables fail operational capability, such as after a
flight software reset. In addition, it simplifies uplink prod-
uct creation and review since intent and constraints are ex-
plicitly captured and checked on-board. This reduces daily
operations tactical planning overhead for command product
generation.

The MEXEC approach was designed to leverage exist-
ing sequencing capability. A MEXEC task can represent a
sequence. This simplifies sequence creation by decoupling

sub-system interactions from sequencing. Sub-system inter-
actions, such as the dependency of the UVS sub-system on
the GNC and Thermal sub-systems as shown in Figure 2,
are managed via constraints. The flexible choice between
sequencing and commanding with higher level intent allows
incremental improvement over sequencing.

Constraints and Impacts

To perform lightweight on-board constraint checking for
the executing and remainder of the plan, each task in an
MEXEC plan includes constraints and impacts on resources.

e A resource is a value over time. For example,
time/duration, data volume, energy, claims, states.

e A constraint is a requirement on a resource value at a
specific time, or over a time interval. For example power
spikes must stay below 100W, data volume is empty at
start of flyby, temperature between 10 and 20 degrees dur-
ing observation, claim on an instrument during observa-
tion, attitude must be nadir during observation. A PRE
CONSTRAINT must be satisfied just before the start of
the task. A MAINTAIN CONSTRAINT must be satisfied
from (and including) the task start and up to the task end.

e An impact is a change in a resource value at a specific
time, or over a time interval. For example, power load of
an observation, data volume consumed by an observation,
temperature change from a heating activity, claim on an
instrument during an observation, slew changes pointing
state. A PRE IMPACT occurs at the start of the task, a
MAINTAIN IMPACT occurs at the start of the task and up
to the task end, a POST IMPACT occurs at the end of the
task.
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Figure 4: Nominal MEXEC plan represented in Gantt chart
form.

Example Flyby Scenario

Figure 4 shows an example of nominal MEXEC plan that
captures intent in Gantt chart form. Planned tasks are shown
in blue. The time notation has been simplified for discus-
sion. It shows that GncAttain NADIR task is scheduled to
start at 2028-040T10:00 for a duration of 15min and an In-
strument Flyby Request is scheduled for 2028-040T10:15
for a duration of 50min. Figure 5 shows an expanded view
of the plan. The Instrument Flyby task is scheduled to sat-
isfy the Instrument Flyby Request. The green bars on the top
shows examples of spacecraft state. Europa flight software
has a State Buffer Store (SBS) module that provides state
updates to all flight software modules including MEXEC.
Figure 5 provides examples of task constraints and impacts
as well. For example:

o The GncAttain NADIR task has the POST IMPACT after
task completion that the Attitude State is NADIR.

o The Instrument Flyby task has the PRE CONSTRAINT
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Figure 5: Example constraints and impacts.

that it requires the Aftitude State to be NADIR at the start.

e The Instrument Flyby task also has a MAINTAIN CON-
STRAINT requiring the Attitude State to be NADIR for
the duration of task execution.

o The Instrument Flyby task has a DURING IMPACT that
for the duration of the task it satisfies the Instrument Flyby
Request.

e The Instrument Degraded Flyby task also has the DUR-
ING IMPACT that for the duration of the task it satisfies
the Instrument Flyby Request.

Example Flyby Reset Scenario

Figure 6 shows nominal plan execution until 2028-
040T10:30 at which time the spacecraft encounters a flight
software reset. Blue boxes show the initial plan and the or-
ange lines show the as-executed plan. The Europa spacecraft
is baseline to take three minutes to run fault protection and



Figure 6: Example constraint violation due to flight software
reset.

recover from the fight software reset. On recovery, system
fault protection restarts MEXEC. MEXEC restores the task
network and plan state. It queries current spacecraft state
and determines that the Attitude State is UNKNOWN. This
violates the MAINTAIN CONSTRAINT for the Instrument
Flyby task which requires the attitude state to be NADIR.
Due to the violation of the MAINTAIN CONSTRAIN con-
straint the Instrument Flyby task is cleanly aborted. This
is done at the MEXEC controller level (described in the
MEXEC Planner and Controller section) and the MEXEC
planner is notified.

As part of MEXEC development we interviewed stake-
holders from a wide variety of past and existing deep space
missions, including orbiters, landers and rovers. One of the
features that many desired was the ability to explicitly spec-
ify contingency responses for a given situation. MEXEC
allows contingency responses to be conditioned on failure
type. Figure 7 shows an example of an explicit contingency
response for the Instrument Flyby task. On failure the con-
tingency response was to restart the task.

To schedule the Instrument Flyby task MEXEC still en-
sures that all the task constraints and impacts for the task and
the remainder of the plan are considered. It detects that the
PRE CONSTRAINT for the Instrument Flyby task requires
that the Attitude State be NADIR.

MEXEC allows specification of plan modifiers to resolve
violations. Examples, of plan modifiers include adding,
deleting, and moving tasks. Based on feedback from stake-
holders MEXEC provides a mechanism to explicitly specify
permissions for modifying specific tasks. Figure 7 shows
that in this scenario plan modifiers included adding Gn-
cAttain NADIR and Instrument Degraded Flyby. When
MEXEC detects the PRE CONSTRAINT violation when
scheduling the Instrument Flyby task it resolves it by adding
a GncAttain NADIR task before it since it has a POST IM-
PACT of changing the Attitude State to NADIR. Then there
remains a violation that the Instrument Flyby Request is no
longer satisfied for the period that the spacecraft is attain-
ing NADIR. To resolve this MEXEC adds a Instrument De-

graded Flyby task that does not have a PRE CONSTRAINT
for NADIR pointing and collects instrument data in a de-
graded mode.

Figure 8 shows that unlike sequencing approaches the
same MEXEC plan can handle a wide variety of reset con-
ditions since the constraint and intent are captured in task
specifications. In this case the reset occurs late in the
flyby with limited time between recovery from reset and the
next maneuver post flyby. As in the case of the early re-
set, MEXEC detects the constraint violation for Instrument
Flyby task when the Attitude State is not NADIR post re-
set. It attempts to execute the same contingency response to
restart GncAttain NADIR and Instrument Flyby task combi-
nation but cannot do so while meeting temporal constraints.
It therefore attempts additional plan modifiers, in this case it
adds a Instrument Degraded Flyby task.

MEXEC Planner and Controller

MEXEC consists of separate planning and a control loops to
allow plan deliberation time while maintaining responsive-
ness to currently executing and pending tasks.

The plan update loop consists of a lightweight planner and
timeline library that project plans beyond the current control
horizon by projecting task impacts and constraints on time-
lines of shared resources. It updates resources, performs va-
lidity checks, and performs plan repair and optimization. If
conflicts are detected it applies conflict resolution methods
including adding, deleting and moving tasks. The planner
commits tasks within the control horizon to the controller,
where committing transfers ownership of the activity from
the MEXEC planner to the MEXEC controller. The plan-
ner can no longer change the activity, however the controller
provides updates on state changes of the activity to the plan-
ner. This allows the planner to update the activities in the
remainder of the plan based on execution. The planner saves
the task network at the start and re-loads it if the plan is not
improved by the plan update time.

The control loop executes tasks from the current time to
the end of the control horizon. Plan constraints and im-
pacts are automatically translated into control conditions. In
additional controller only conditions may also be specified
for additional monitoring. The controller monitors relevant
spacecraft state and processes eligible conditions. It dis-
patches commands and processes replies. Events received
by the controller are queued and processed in the order they
are received. In addition it updates the planner with the ex-
ecution status of each task in real time. When additional
tasks are committed, the task network is updated before the
next event is processed. The MEXEC control conditions are
specified as Boolean expressions. MEXEC allows any com-
bination of AND, OR expression in Boolean expressions
with a fixed max number of terms. Most standard Boolean
and relational operators are supported in the Boolean expres-
sions. Timeouts and skipping of control conditions are also
allowed.

The MEXEC planner uses the timeline library to perform
lightweight validity checks and compute valid intervals to
check and repair the remainder of the plan (similar to (Ra-
bideau & Govindjee 1999, Knight R. 2000, Rabideau G.
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Figure 7: MEXEC response to an early reset.

Figure 8: MEXEC response to an late reset.



2017)). The validity checks return true if the constraint set
is satisfied for the given task (or group). Valid intervals
are time windows where a task (or group) can be scheduled
without violating the constraint set. MEXEC respects the
valid intervals of the constraints of the task being scheduled,
and the valid intervals of the impacts of the activity being
scheduled, with respect to the constraints of other activities.
Both impacts and constraints have duration that is consid-
ered in the valid interval calculation. Both also have a rela-
tive offset from the start and end. The valid intervals for the
impact/constraint are translated into valid intervals for the
task.

Examples of constraints and impacts are provided in the
section on Constraints and Impacts. Here we provide exam-
ples of validity checks and valid interval calculations per-
formed by the timeline library:

e For an example temporal constraint {start, end} of activ-
ity A must occur {before, after } the {start, end} of activ-
ity B by [min, max]. The validity check is performed by
computing the distance between A and B and comparing
to [min, max]. The valid interval for a single constraint is
computed by adding or subtracting the min and max dis-
tances to the fixed activity to get a range of valid times for
the activity being scheduled. For a chain of constraints a
shortest path algorithm on the temporal constraint graph
may be used.

e For a claim impact (binary semaphore) validity check-
ing is trivial and performed by checking that a new claim
does not overlap an existing one. Valid interval calcula-
tion is performed by subtracting the intervals that make
up the temporal extent from all other claims on the same
resource as shown in Figure 9.

e For a state change impact, validity checking is performed
by checking that no inconsistent constraint exists between
new state changer and the next state changer. Valid inter-
vals are computed by looking between each pair of state
changers, and finding the latest inconsistent constraint, in-
clude the time interval from the end of the inconsistent
constraint to the state changer as shown in Figure 10.

e For a state constraint(s) required over a time range va-
lidity checks are performed by checking that the previous
state changer (and overlapping changers) change to one of
the required states. Valid intervals are computed for each
consistent state changer, by including the time range from
the consistent changer to the next inconsistent changer as
shown in Figure 10.

In the example flyby scenario the Gnc Attitude timeline
(shown in Figure 11) captures the state impact of various
parametrized GncAttain tasks such as GncAttain NADIR,
GncAttain UVS Scan Init etc. The PRE IMPACT of GncAt-
tain tasks is state TURNING and the POST IMPACT is the
attitude commadned by the GncAttain task such as NADIR.
The InstrumentFlyby task has a MAINTAIN CONSTRAINT
that GncAttitude must be NADIR.
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Valid intervals for new claim

Figure 9: Valid intervals and validity check for claim im-
pacts.
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Ground Tool

One of the concerns raised by stakeholders was the scope
of the task to generate plans with the additional information
needed by MEXEC for plan execution. Ground based plan-
ning for generating MEXEC can be manual, mixed-initiative
or fully automated. A ground tool was developed using the
ASPEN planning and scheduling system for the prototype
demonstration.

In the manual process a user generates the plan by using
the ground tool as a graphical user interface. In the mixed-
initiative mode a user generates the plan or fragments of the
plan and the planner quickly analyzes the plan for errors or
predicted constraint violations. It can suggest a space of res-
olutions for each. The planner will respect users express de-
mands, even if it does nott understand them. In the fully au-
tomatic process, the planner autonomously refines plan until
all flight constraints are met. It simultaneously optimizes
the plan to include as much science as possible. The au-
tonomous ground planner has different re-planning authority
than MEXEC. The ground based planner is typically given
much more latitude to rearrange entire plan. The permis-
sions given to MEXEC for in-flight conflict resolution are
distinct and typically more limited.

The ASPEN based ground tool allows specification of in-
puts in various forms:

e Can specify just high level science requests. For exam-
ple, the input may be for a Instrument FlybyRquest at a
start time 2028-002T06:00:00 with a duration = 10h. The
ASPEN based planner will fill in any required accessory
actions such as GncAttain NADIR.

e Can combine with explicit low level command invocation.
For example, adding an explicit GncAttain NADIR at a
start time of 2028-002T05:00:00. This is used in case op-
erations have additional information not available to the
planner.

e Can specify the initial schedule of activities at a low level.
For example, specifying the start time and duration for
GncAttain NADIR, Instrument Flyby, etc. Doing so limits
the ability of ASPEN to help with plan generation.

e Can also define tasks from scratch in the editor.

Figure 12 shows the initial user intent to perform a Instru-
ment FlybyRequest. The Aspen-based tool automatically de-
tects and resolve the conflicts and proposed the modified
plan shown in Figure 14.

Status

Prototype software for MEXEC was developed over four
months at a 0.3 full time effort level as part of Europa flight
software. MEXEC is designed for multi-mission use with
few dependencies on specific flight software and operating
system.

In summer 2016 multiple fail-operational scenarios for
Europa flyby were demonstrated with MEXEC with resets
occurring at different times with GNC maintaining NADIR
pointing for flyby science, and GNC slewing for UVS Scan
and UVS performing the Scanning. The demonstrations
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Figure 14: Ground tool proposal for conflict free plan that
satisfied intent.

were done in Linux, the Europa flight software simula-
tion workstation test environment (WSTS), and the Europa
testbed running MEXEC integrated with Europa flight soft-
ware on flight avionics hardware. Runs in WSTS and on the
Europa testbed were demonstrated with space and time par-
titioning'. The testbed runs were on a 200MHz RAD 750.
It took less than 0.1 seconds to resolve plan problems after
simulated resets in the testbed for the prototype scenarios.

Since Europa flight software is in early development
GNC, Thermal and Instrument software was simulated.
However, the actual flight software interfaces were used to
communicate between MEXEC and the simulated modules
and the Europa flight software state buffer interface was used
for monitoring spacecraft state.

A ground tool was also developed to generate MEXEC
plans and MEXEC was demonstrated end-to-end executing
a plan generated by the ground tool.

Conclusions and Lessons Learned

The MEXEC prototype demonstrated that lightweight plan-
ning and execution can provide fail-operational capability
in a flight-like environment. It provides the capability for
checking constraints on-board for the executing and remain-
ing plan. Unlike a large proportion of the alternate flight ap-
proaches it does not require special cases for flight software
resets occurring at different times. In addition it provides
plan enhancement options. MEXEC can add, move, and re-
move tasks if given permission.The prototype also demon-
strated capability with time and space partitioning on Europa

"Each application software runs in a partition with its own
memory space and dedicated time slot
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system testbed. It also provided a preliminary feasibility as-
sessment for flight and ground interfaces and tools. MEXEC
is currently integrated into Europa Flight Software, but is not
in the baseline. The timeline library from MEXEC has also
been ported to the Mars 2020 rover project for use in the
Mars 2020 Onboard Planner (OBP) (Rabideau G. 2017).

A common concern was the ability to perform verifica-
tion and validation of flight planning and execution soft-
ware. Another key concern for operators was the need
to develop user friendly interfaces to specify and manage
MEXEC tasks.

There is a tremendous amount of prior work in the plan-
ning and execution literature (Gat 1998, R. Simmons 1998,
Muscettola 1998, S. Chien 1999, S. Chien 2000, Rabideau &
Govindjee 1999, J. Frank 2001, A. Jonsson 2000, V. Verma
2005, R. Rasmussen 2005, ?, V. Verma 2006, T. Estlin
2007, ?). Strides have been made in on-board autonomy
in Earth observing missions, however deep space missions
have continued to use sequencing based approaches as the
primary means for spacecraft control. Due to radiation
hardening requirements deep space missions have very lim-
ited computing (the Europa mission is baselined to use a
RAD750 processor), and preference for human oversight.
Unlike a number of the previous approaches the charter for
the MEXEC prototype was not a new automated planning
driven architecture or event driven scripting language, but
instead a new component in low risk heritage flight software
and operations approach. MEXEC code was written com-
pletely from scratch. It inherits from the literature and was
designed to meet current flight software requirements and
constraints, and allow human operators the ability to control
the level of automated plan update at a high level of granu-
larity.
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